История измерений

Рождение ультразвука, ультразвуковой дефектоскоп

В 1880 году французские физики, братья Пьер и Поль Кюри, заметили, что при сжатии и растяжении кристалла кварца с двух сторон на его гранях, перпендикулярных направлению сжатия, появляются электрические заряды. Это явление было названо пьезоэлектричеством (от греческого «пьезо» — «давлю»), а материалы с такими свойствами — пьезоэлектриками. Позже это явление объяснили анизотропией кристалла кварца — разные физические свойства вдоль разных граней.

Во время первой мировой войны французский исследователь Поль Ланжевен предложил использовать пьезоэлектрический эффект для обнаружения подводных лодок. Если пьезоэлектрик встречает на своем пути ультразвуковую волну от винта лодки, которая распространяется со скоростью 1460 км/с, то она сжимает его грани, и на них появляются электрические заряды. Сжимаясь и разжимаясь, кристалл как бы генерирует переменный электрический ток, который можно измерить чувствительными приборами. Если же к граням кристалла приложить переменное напряжение, он сам начнет колебаться, сжимаясь и разжимаясь с частотой переменного напряжения. Эти колебания кристалла передаются среде, граничащей с кристаллом (воздуху, воде, твердому телу). Так возникает ультразвуковая волна.

Ланжевен попробовал зарядить грани кварцевого кристалла электричеством от генератора переменного тока высокой частоты. При этом он заметил, что кристалл колеблется в такт изменению напряжения. Чтобы усилить эти колебания, ученый вложил между стальными листами-электродами не одну, а несколько пластинок и добился возникновения резонанса — резкого увеличения амплитуды колебаний. Эти исследования Ланжевена позволили создавать ультразвуковые излучатели различной частоты. Позже появились излучатели на основе титаната бария, а также других кристаллов и керамики, которые могут быть любой формы и размеров.

Ультразвук можно получить и другим способом. В 1847 году английский физик Джеймс Джоуль обнаружил, что при перемагничивании электрическим током железных и никелевых стержней они то уменьшаются, то увеличиваются в такт изменениям направления тока. При этом в окружающей среде возбуждаются волны, частота которых зависит от колебаний стержня. Это явление назвали магнитострикцией (от латинского «стриктус» — «сжатие»).

Ультразвук оказался просто находкой для решения технических, научных и медицинских задач. Например, ультразвуковые дефектоскопы, объединенные с компьютером, помогают контролировать качество сварных швов, бетонных опор и плит. Ультразвуковую аппаратуру также с успехом применяют для резки и сверления металлов, стекла и других материалов. Ультразвук можно использовать для измельчения вещества — например, для приготовления тонко размолотого цемента или асбеста, для получения однородных эмульсий, для очистки жидкости или газа от примесей. С помощью сфокусированного пучка ультразвуковых волн распыляют некоторые жидкости, например, ароматические вещества, лекарственные препараты. Получающийся «ультразвуковой туман», как правило, более качественный, чем аэрозольный. И сам этот метод экологически более безопасный, так как можно отказаться от фторсодержащих газов, которые используются в аэрозольных баллончиках.